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Abstract 

In this report, certain properties of the multicomponent plasmas present in 
the group-V semimetals As, Sb, and Bi have been derived. Notable among 
these properties is anisotropy of the effective masses of both electrons and 
holes, which in turn leads to anisotropy in the plasma frequencies of these 
materials. Because the systems of interest are particles in a host matrix 
rather than bulk materials, it is likely that this anisotropy in the plasma 
response will be averaged out in some way; however, this problem must be 
examined in detail before such a conclusion is warranted. 
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1.    Introduction 

The electrodynamic properties of the semimetallic group-V elements (ar- 
senic, antimony, and bismuth) are complex and ill-understood in many 
ways. This is primarily due to the complicated structures of their conduc- 
tion and valence bands, which have many maxima and minima for the 
Fermi surface to intersect, resulting in multiple "pockets" of electrons and 
holes populated by carriers at all temperatures [1]. According to the Som- 
merfeld theory of metals, each minimum or maximum should give rise to a 
different species of electron or hole, so that the electrodynamic response of 
the material resembles that of a multicomponent plasma. To make matters 
worse, all these materials crystallize orthorhombically, so that their charge 
carriers (both electrons and holes) have anisotropic effective masses. 

When nanometer-size samples of these materials (so-called quantum dots) 
are prepared, the resulting systems are expected to behave in unusual ways 
when probed by electromagnetic radiation. A particularly easy way to cre- 
ate such samples was discovered some 10 years ago, when researchers 
found that under certain conditions low-temperature growth of GaAs by 
molecular-beam epitaxy (MBE) resulted in material with large numbers of 
ultramicroscopic inclusions of As, up to 1 percent of the host volume [2], 
which arose from the aggregation of GaAs antisite defects (i.e., lattice sites at 
which a gallium atom was replaced by an As atom). Although theories re- 
garding their nature are still problematic, there are strong indications that 
these inclusions, which are roughly spherical in shape, consist of metal- 
lic arsenic. Similar behavior has been observed when InAs and GaSb are 
grown in this way. 

There is ample reason to believe that these materials could be useful in 
device engineering. However, before this usefulness can be explored, the 
individual nanoparticles must be properly modeled with regard to interac- 
tions with electromagnetic waves. In this report, I derive an appropriate set 
of constitutive equations that can be used with the Maxwell equations to 
implement this modeling. 



2.    Boltzmann-Equation Calculation of Fermi Velocities in Group-V 
Semimetals 

The most effective way to deal with metals and their interactions with 
electromagnetic radiation (light, microwaves, etc) is to use the Boltzmann- 
Vlasov equation to calculate momentum (fc-space) distributions for the 
metallic charge carriers [3]. For semimetals, this naturally leads to a gen- 
eral multiband set of Boltzmann equations: 

dtfJ + v^\k)dcJJ + ~(daö)(K^-fJ h 
?7 0')      , ...    _ 

Voü,(*) (1) 

where f^\k.x,t) is the number distribution function for the jth carrier, 

Va (k) is the semiclassical (hydrodynamic) velocity of such a carrier with 
momentum k, TJ is its particle-number-conserving relaxation time, and 
4>(x, t) is any external (electrostatic) potential applied to the system. The 
hydrodynamic approximation introduces a parameterization of the solu- 
tions to these equations in terms of macroscopic variables such as density, 
drift velocity, etc, which are determined self-consistently as moments of the 
equations. If the particles are semiconducting with parabolic bands, we can 
use Maxwell-Boltzmann functions for the perturbed carrier distributions: 

f{j)(k,xA) = 4n3nu){xJ) ■niim't 
-1/2 

3/2 

2irkBTU)(x:t) 
exp < - 

fcT(J') W*"'^«}- (2) 

where 

h_2 

2 
G^(k,x,t) = y (k-kf(x.t) - k0j)a [m"1]^ (k-$»{x,t) - &,•) (3) 

Here n^(.r. £) is the hydrodynamic density of carriers in the jth carrier 

pocket, fcp (x.t) is the hydrodynamic drift momentum of carriers in this 
pocket, fcoj locates the center of the pocket in fc-space, mj1 is the effective- 
mass tensor of the jth carrier type with principal values mi and mt (as- 
suming the pockets are spheroidal), fcß is Boltzmann's constant, T^ (x, t) 
is the hydrodynamic temperature of the jth carrier type, and h is Planck's 
constant. The corresponding unperturbed distributions are 

/oü,(fe) = 47r3nJ ni\mi 
-1/2 n2 

2nkBT 

3/2 

exp 
"2fcT 

k-k :oj m -l 

„„(*-**), (4) 



where rig is the equilibrium density of carriers in the j'th carrier pocket, 
and T is the usual lattice temperature. For metallic particles, the correct 
distributions at low temperatures are perturbed Fermi distributions: 

f{j) (k, x,t) = 6 (eF{x, t) - ePj - G{j) (k, x, tj) , (5) 

where ep(x, t) is a position-dependent Fermi energy (imref) measured from 
some constant reference (e.g., vacuum), and epj marks the minimum en- 
ergy of the jth pocket. The corresponding equilibrium distribution is 

/0
ü)(fc) = e(eF- eP3 - y (k-k0j)a [m-l}aß (k - hj)^  ,       (6) 

where eF is the equilibrium Fermi energy. We can relate the density UQ to 
€F by introducing the density-of-states mass [i = [m2mi] and the quan- 
tity kFj = 2/iAepj/h2, where AeFj = eF - ePj (i.e., the Fermi wave vector 
of pocket j), and by integrating the distribution over fc-space in the usual 
way. This gives 

n» - g$ . (7) 

We can likewise define the deviation from equilibrium in the usual way: 

8fW(k,x,t) = fW(k,x,t) - $\k) . (8) 

By integrating only over fc-space, we obtain the perturbed and unperturbed 
hydrodynamic particle densities and their difference: 

n^(x,t) =  -^-3 fd3kf^(k,x,t), 
(271")     J (27 

(2TT)< 

5n{j\x,t) = n{j){x,t)-n{
0
j) . (9) 

nX>  =  -—gfjkfPik), 
Z7T       J 

Note that these also enter into the number-conserving collisional relaxation 
term and hence must be determined self-consistently. These equations cou- 
ple to the Poisson equation in the usual way: 

V2(f>=-J2eMJ\x,t), (10) 
3 

where the charge ej = +1 for holes, —1 for electrons. 

Let us linearize the Boltzmann equations around the unperturbed 
distributions: 

wü)+v^(k)da8f{j) + fa</>) (J-/ij)w) = 4 (Vj) - ^/oü)$)>    (ID 



where we neglect all spatial dependences to zero order. To solve these equa- 
tions, we use the (wave) ansatz 

Sf{J\k.x.t) = 8f^\k)ei(^-^ . 

8n{3\x.t)  = ön^pc^-^ , 

*« = -iEe>iJ)- (12) 
1    j 

Then the equations for the perturbed system become 

-™ + ^)*/,ü)(fc)+iqavP{k)6fP(k) = -epq^q)(4rJ°)$))+ 7, (^r^^)'(13) 

which are easily solved: 

SfP (*) = — ~ ^ J- •        (14) 

We can now substitute this expression back into the density expression 

6nij) 2 
9 /o„\3 (27T) 

to get 

J8^\k)dH. (15) 

H    n (wg(27r)3 y w + ^ _^md + rj ^ (27r)3 y ——■W)d L , (i6) 

which can be written 

,ü) - £i^.,A Acv.a i <5/? U) 

Hu, = ^W; + rir3^ <17> 'j  n. ü 

The first term in this expression contains the vector coefficient 

a fU)(i:\ 
= -^[<fik      ^/0   (M,      . (18) 

(27T)3 7 „ 4- ±-n.^(tA   ■ V      ' (2^)3^ u+i-g^fc)' 

while the second term contains the scalar coefficient 

0„._      2       f*c fo](0 ^ = lhi^—° ( U)„v (19) 
"+j:-q«vX>(0 

1 



Since each fc-space pocket in the semimetal is ellipsoidal, the hydrodynamic 
velocities can be defined in terms of the effective mass tensors: 

v^(k) = h m„- 
JQ'7 

k — k,Qj)   = h m„- 
J Q7 

S7 ) (20) 

where £7 is the deviation in k from the jth band minimum (or maximum). 

Then the scalar term becomes 

^2j 
(27T) 

■/* 

/oü)(D 
U) ■ qah m. 

07 

(21) 

and the vector term becomes 

cv/3   _ 

(27T) 
d3^- 

_d_*U)(t\ 

u + 7- - gQft m0- 
07 

(22) 

Using the Fermi distributions 

/<SJ)(0 = o(eF-ePj-^Q mi aß iß (23) 

gives 

ö/oü)(i) = -Ä2 

ÖCa 
m„- a/3^ l£F-6Pj-TeQ m 

'•?'   Ja/3 ,&     •       (24) 

Then 3^ becomes 

= -Ä(2^/d3« 

7i m -1 

07 

^ + 7" - Qa^ ra„- 
-<J(eF-eö-) (25) 

07 

where 

Hi - ePj + y&* mi a/3 fc- (26) 

We can now solve the density equation 

1- 
T3 nij) 

oJ sü) = iM«)*u (27) 

and insert the results into Poisson's equation to get 

«9 
2^9 £ 0/3 (28) 

Note that e2 = e2 for solid-state systems. Equation (28) can only be true if 

1 = 
eq< E i 92j 

'3 n, (3) 
1      0-/9 (29) 



where 

^f, = -rJ7Aä ld*s- 
(27T) 

ft<7.'i rrii 
ßi £> 

u + hqt 7TU 
i 3f £ 

■6{fF-ev) (30) 

The roots of this equation define various dispersion relations for plasma 
waves u)W(q). 

Because of the (^-function, it is possible to evaluate expression (30) analyti- 
cally. Write 

m 
j    \a:3 

— Sa\D\„Su; 3 ■ 

where the matrix S is a rotation chosen to diagonalize m 1. Then 

(27T)' 'u+jj- hq3Sß\DxuS,n^ 

(31) 

(32) 

where AeFj = eF - eFj. Let xv = S^^, Qu = S„7ry7. Then the Jacobian for 
this transformation is 1, and so 

qgS*u = -ft-——  / cPx 
(27T) Lü + ±-TiQxDxvXu   \ 2 

(33) 

Now, since D is diagonal, we can easily define D = Dll2D1/2 as a scaling 
-ansforn natio a. If yv = £>l/2' 

Qß^ij = -ft mt mi 
1/2 2 

(27T)3 

.r7, A,y = ft 

A„y 

£)l/2 
1/7 

Q7, then 

/A /L 
o> + A„yt 

<5   AeFj - -if    ,  (34) 

where the factor in front is the Jacobian of the scaling transformation. In 
spherical coordinates, this expression becomes 

oß       n r 2   ' 1/2    f°    2    ,    jj/\ ^    2\    Z1     ., m Ay COS Ö J    y^ dt/<J I AeFj - —y1 ) /    d(cosfl)- 
1 ui + jr - hy cos 0 

(35) 

where 

A = #(& + £ 
\ nit      rni 

1/2      r - 11/2 

(36) 

Here, q±_ and g~ are components of q perpendicular and parallel to the c-axis 
of the particle material in the principal-axis system of cylindrical coordi- 
nates. I have used the fact that as a scalar | A| must be rotationally invariant. 

Introducing the density-of-states mass n = [ntfmi]l/' and the Fermi wave 
vector kFj = 2nAeFj/h2 for pocket j as we did above, we obtain 

cv3 
Qß^ij ^ f1 rf*-L_ 

2TT 
(37) 



where 

r = 
U) + 

2AejFj (qa (mj
1)_aqß 

aß 

1/2 
(38) 

contains the tensor nature of the effective mass both explicitly and implic- 
itly through the Fermi energy The integral is trivial: 

^-^HKF^H^ (39) 

The quantity 92j can also be evaluated explicitly. Analysis similar to that 
given above leads to the double integral 

^2j = 2?r2 mtmi 
1/2 

y'dyO \AeFj --£V d(cosö) 
1 

üJ + Ay cos 6 
(40) 

Introducing the notation yF = 2Aef and e = cos 9 as before, and using 
the properties of the Fermi function, we can rewrite the above as 

32j = 
2TT2 

mtm,[ 
1/2    [VF /"I 1     y2dyj_^ 

LÜ + Ay^ 
(41) 

Some algebra gives the following expression for this integral: 

92j = 
3n, U) 

(»+*) 
rz + (l - rz) ^ in 

r + i 
r-i 

,Ü) 

w + 
■r/2(r),    (42) 

where F is the quantity introduced above. 

Let us solve the plasma dispersion relation to lowest order in q, i.e., the 
long-wavelength limit. To do so, we take the small-g limit of our explicit 
expressions in equations (30) and (42), which corresponds to F —> oo. Some 
algebra shows that the function /2(T) defined in equation (42) goes to 1 in 
this limit, so to lowest order 

^zhl^)i() = z¥r (43) 

The same limit for qp^ij gives 

ß _ ßkFj (      1 
Qß^ij n* 2h  I    3T2 

2/ikpj 
' Zit2Ti 

AeFj 
«I + ii 
mt        mi 

(W + i/TjY 
(44) 



But 

2fiAeFjkFj  |    ^ + -^ m i        mi 

37T27?       I (u; + ?y7-j)'-! 
= -r» 2

2//.AfFjfcF,; 
t,2 Q    '2 37T 

-ft 
4,   I ?« J   Jo/3 

mi mi 

9/3 

3vH  I    (LJ + 7/TJ) 

-1 

= - fm{,j) < 
TO ■ 

a,3 
9,3 

(w + i/r,-)2 
> . (45) 

so that equation (29) becomes 

eg2 ^ 

i -l 

1- 
i      1 

^-+7", UJ + 
2</o TO, 

o/3 
9/3 • (46) 

Assuming that the relaxation times are the same for all the pockets, we 
obtain 

.2 1 

1- 
e92

w (<"+*)  IT 
or, introducing the unit vector q = q/ \q\, 

.      e2 1 

Aj) TO, 9/9 (47) 

Q.'3 

u; (« + ±) £ "o   9Q TO. 9.9 ? 1/3      J 
0. (48) 

This expression, which is clearly in the form of a requirement that a 
"Drude"-type conductivity for the system should vanish, defines the 
"plasma frequency" of the multicomponent system as the sum in the nu- 
merator. In general this sum will depend on the direction of q. 

To derive an analogue of the linearized Thomas-Fermi equation and a cor- 
responding screening length, we need to take these expansions to higher 
order in q. Saving next-order terms in /] (T) and /2(r) gives 

f rn ~ _ J L J1(L)~   3r2    5r4 /2(r)«l + 
3T2 " 

(49) 

Let us rewrite equation (29) as 

eq2 t—1 

and note that 

j /2(r) 
TjU)+ +- -^nh (r) 

ßk-Fj _ 3 n[j] 

■K2h.  ~ 2 AeFj 

(50) 

(51) 



Then equation (50) becomes 

1-??*■ 1- 
i /2(r) 

TJÜÜ + 
'3 J 

/i(r), (52) 

where A2 is the Thomas-Fermi screening length for carriers in the j th pocket: 

(53) 2 _ _o_«o_t_ 
J'      2e AeF?- 

With these results, we can easily derive the expression 

f 

i = E^ 
n^e2^ mw 

a/3 9/3 

e^ w (a; + •♦s 
AeFj 

w + 
1 + 

2 i 
3 WTi 

9a mA aß % (54) 

The peculiar fraction (6/5) that occurs in this expression derives from 
our linearization around a spatially independent zero-order distribution. 
A more careful linearization is needed to recover the true hydrodynamic 
value of this coefficient and, indeed, to recover any of the expressions en- 
countered in classical fluid mechanics. This will be the subject of a subse- 
quent report. 



3.    Calculations of Sums Over k-Space Minima for High-Symmetry 
Band Structures 

3.1    Simple Cubic Band Structure 

A simple cubic band structure is appropriate for elemental silicon (see fig. 
1). In order to calculate the effective masses for this method, we assume 
that the densities in the carrier pockets are the same, and that the principal- 
axis projections are xx, yy, and zz. Since there are six pockets, each holds 
1/6 of the electrons. 

Let us write the effective masses as follows: 

77?. 777 (-D 

m (2) 

777 (3) 

m 

m(~3> 

l        1   ..        1   ,..      .M = —xx + — (yy + zz) 
mi 777 f 

mi mt 
1        1  ..       1   ,..      ... 

= —zz H (yy + xx) 
ni; rrit 

and 

(55) 

£ 77, 
(j) 

77? 

Then the sum is simple: 

1/1        2 \ .1/1        2 
-no    — + —    2 [xx + yy + zz] = -n0 [— + — 

Kmi      mtJ 3      \rni      mt 6 (56) 

where 1 is the identity matrix. This shows that the mass required is just the 
usual isotropic optical mass. 

Figure 1. Conduction 
band minima (pockets) 
of silicon in /c-space. 
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3.2    (111) Cubic Pockets (Tetrahedral Band Structure) 

A tetrahedral band structure is appropriate for elemental germanium (see 
fig. 2). Here we have four pockets, at the vertices of a tetrahedron. The 
effective-mass tensors are 

m (i) 

m (2) 

m 

mv 

(-D 

-2) 

m (3) m (-3) 

m (4) m (-4) 

-1 1   _ 1    /„   „ 
= —eiei H siSi + t\t\ 

mi mt V 
-i       1  „ . 1   /. „ 

= —e2e2 H s2S2 + ^2*2 

-1       1  . .        1   /. .       ~ - \ 
= —e3e3 H 5353 + ^3*3    ,     and 

m; mt 
v ' 

-1       1  „ .        1   /. . 
= —e4ß4 H S4S4 + £4*4 

m; mt v 
(57) 

where the vectors e^s^ii = ei® §i mark the principal axes of the pocket 
ellipsoids: 

il = 73 ^ + V + ^ ' äl = 75 (~£ + ® ' *! = 7S (_Ä ~ # + Tz) ; 

e2 = ^75 (-x + y - 2) , s2 = ^ (-£ - y) , t2 = ^{-x + y + 2z) ; 

^ = 73 (-Ä ~ ^ + ^ ' §3 = 72^~y^ '     *3 = 7e (Ä + # + 2i) ;    and 

e4 = 4- (x - y - 2) , s4 = -75 (x + y) ,     U = 4* (x - y + 2i) . V3 ^ ^ 

(58) 

Figure 2. Conduction 
band minima (pockets) 
of germanium in 
fc-space. 
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Then the dyadic products can be written in matrix form as follows: 

/l    1    1 
eih = \ 1    1    1 

\l    1    1 
( l      _1 

e2e2 = \ -1      1 

e-ie-i = 3 

e4e4 

S\S\  = 

S'2»2 

S'iSj, = 

S4S4 

1 -1 0 
-1 1 0 
0 

1   1 
0 0 

1 
1   1 0 • 
0    0 

1 
oy 

-1 
/ 

0 
-1 1 0 
0 

1   1 
0 0 

1   1 0 I • 
0 0 oy I 

Ml = 

hh - h 

i3h = H 1   1   2 

uU = k 

(59) 

Performing the summation once more, we obtain 

m (i) 
-1 

1 
3 "*\ 1 

3 
2 
3 

1 
3 

1 
3 

1 
3 i) 

m (2) 

m (3) 

1 
3 
1 
3 
_i 

3 

(60) 
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and so 

m (4)1 
3m/ 

I 
1 

mi 
V 

1 
1 

_i 
3 

l 
3 
1 
3 

(61) 

U) 
o m„ 

Each pocket holds 1/4 of the electrons. Then the total mass sum equals 

4 

1 r i 
7«n< 
4 I nil 

3    2   °   \ 1 0       0+- 
o o I '    mi 

/§  0  0 
0 3  0   I = -n0 I — + —) 1 

i  0  Q   8  /      3      \mi      mtJ 
(62) 

which is again the isotropic optical mass. 
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4.    Calculations of Sums Over /c-space Minima for the Band Structures 
of Group-V Elements 

The band structures of the group-V elements are described in detail by Lin 
and Falicov [4] and Shapira and Williamson [5]. For the conduction band, 
the pattern of ellipsoidal pockets shown in figure 3 is obtained; the angle 
with 2-axis 6c is material-dependent. I assume here that the valence band 
has a similar structure, although the actual Fermi surface of As is a single 
multiconnected surface rather than a collection of pockets. 

Let 
a = cos 6c .    T = sin 6c ■ (63) 

Then the hexagonal symmetry in the basal plane motivates us to introduce 
the quantities 

a = 1/2 ,     ß = V3/2 . (64) 

This allows us to write the longitudinal-mass principal axis vectors as 
follows: 

ei = TX+ az . 

e2 = arx + ßry — az . 

e.3 =  —arx + ßry + az , 

e4 =  — TX — az . 

es =  —arx — ßry + az . 

h = arx — ßrij — az . 

and 

(65) 

Figure 3. 
Conduction-band and 
valence-band minima 
(pockets) of As and Sb 
in fc-space. Upper 
pockets are filled with 
electrons, lower ones 
with holes. 
(a) Three-dimensional 
view, and (b) view 
down c-axis (z-axis in 
(a))- 
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Then the other principal axes are 

Sl = y, h = — ox + TZ ; 

h = -ßx + ay , *2 = aax + ßay + TZ ; 
S3 = -ßx - ay, h = —aax + ßay — TZ 

S4 = -y, U = —ox + TZ ; 

h = ßx— ay , h = aax + ßay + TZ ; 
k = ßx + ay , ti = aax — ßay + TZ . 

and 

(66) 

As before, we find the projection operators 

eiei = 

e2e2 

ese3 = 

e4ß4 

e5ß5 

eee6 = 

S1Sl = 

S2S2 

«353 

S4S4 

S5S5 = 

, «6S6 

0   0   0\ 
010, 
0   0   0/ 

/32       -a/3 0 
—a/3       a2 0 

0        0 0 
ß2      aß     0X 

\ 
a/3     a2     0 > 
0     0    0, / 
0   0   0\ 
0   1   0   ; > 
0    0    0/ 
ß2       -aß 0 

-aß      a2 0 
0        0 0 

ß2     aß     0' \ 
aß     a2     0 : 
0      0     0, / 

The dyadic sums are then 

*i*i = 

hh 

hh 

£4^4 = 

*5*5 

^6^6 — 

o2 0 —OT\ 

0 0 0 1 

— OT 0 r2   ) 
a2a2 aß •a2     ara \ 
aßa2 ß2 a2      ßra h 
ara ßra        T2 / 
a2a2 -aßa2 ara 

-aßa2 ß2a2       - -ßra 

ara -ßra T2 

a2 0 —ar \ 

0 0 0      ; 
— <7T 0 r2   ) 
a2a2 aßa2     ara \ 
aßa2 ß2 a2      ßra h 
ara ßra        T2 / 
a2a2 -aßa2 ara 

-aßa2 ß2a2       - -ßra 

-ßra 

6 

i=l 

6 

i=l 

6 

i=l 

'4a2T2+2r2 0         2(l-2a)Tcr 

0 4/3
2
T

2
              0 

2(1-2Q)T<T 0                60-2 

4a2o-2+2cr2 0         -2{l-2a)ra" 

0 4ß2a2           0         I   , and 
-2(l-2a)T<7 0                 6r2 

'4/32          0 0' 

0       4a2+2 0 

0         0 0, 

(67) 

(68) 

Hence, 

/ J SiSi -\- tjtj — 

i=l 

' 4/32+4a2(j2+2cT2 0 -2(l-2a)r<j' 

0 Aa2+Aß2a2+2 0 

-2(l-2a)r<7 0 6r2 

(69) 

Note that because a = 1/2, this tensor is diagonal! Since ß2 = 3/4, the above 
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becomes 
6 /3(l+fT2) 0 0 

^SiSi + iiij = 0        3(i+,r2)     0 

*=1 \       0 0 6r2 

Likewise, we have 

3r2      0       0 
£><>,■ = [    0      3r2      0 

0       0      6<r2 2 = 1 

so that the averaged optical effective-mass tensor is 

(70) 

(71) 

5> (J) 
0 m.„ =   7"0 < 

0 

/ 3r    °    °   \ 
'    0    3r2    0       + 

ml  \     n       n     fi,2   I       m, 

0 o M 3(1 +a2) 
0 3(1 +a2)    0 
0 0 6r2 J f 

2) 0 0 

i-2 + £ (i + °2) o 
0 i-2 + ^2 

(72) 

In keeping with our expectations, the effective mass tensor is somewhat 
anisotropic. However, there is an angle at which it becomes isotropic; this 
is 

cos 20 c = 
mi 

mt — mi 
(73) 

It is easy to show that the reported angles for the group-V materials do not 
satisfy this criterion, so that anisotropy will be a real issue in any study of 
their plasma response. 
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5.    Conclusions 

In this report, certain properties of the multicomponent plasmas present in 
the group-V semimetals As, Sb, and Bi have been derived. Notable among 
these properties is anisotropy of the effective masses of both electrons and 
holes, which in turn leads to anisotropy in the plasma frequencies of these 
materials. Because the systems of interest are particles in a host matrix 
rather than bulk materials, it is likely that this anisotropy in the plasma 
response will be averaged out in some way; however, this problem must be 
examined in detail before such a conclusion is warranted. 
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